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Abstract

The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical schemes with low

dispersion and dissipation errors. In this paper we describe a strategy for developing high-order accurate prefac-

tored compact schemes, requiring very small stencil support. These schemes require fewer boundary stencils and

offer simpler boundary condition implementation than existing compact schemes. The prefactorization strategy splits

the central implicit schemes into forward and backward biased operators. Using Fourier analysis, we show it is

possible to select the coefficients of the biased operators such that their dispersion characteristics match those of the

original central compact scheme and their numerical wavenumbers have equal and opposite imaginary components.

This ensures that when the forward and backward stencils are added, the original central compact scheme is

recovered. To extend the resolution characteristic of the schemes, an optimization strategy is employed in which

formal order of accuracy is sacrificed in preference to enhanced resolution characteristics across the range of

wavenumbers realizable on a given mesh. The resulting optimized schemes yield improved dispersion characteristics

compared to the standard sixth- and eighth-order compact schemes making them more suitable for high-resolution

numerical simulations in gas dynamics and computational aeroacoustics. The efficiency, accuracy and convergence

characteristics of the new optimized prefactored compact schemes are demonstrated by their application to several

test problems.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The field of computational aeroacoustics (CAA) has grown rapidly during the last decade due to a

resurgence of interest in aeroacoustic phenomena driven by ever harsher legislation and increasing envi-

ronmental awareness. CAA is concerned with the accurate numerical prediction of aerodynamically gen-

erated noise as well as its propagation and far-field characteristics. The inherently unsteady nature of

aeroacoustic phenomena, the disparity in magnitude between mean and acoustic flow quantities, and the
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high frequencies often encountered place stringent demands on the numerics [1]. The trend therefore within

the field of CAA has been to employ higher-order accurate numerical schemes that have in some manner

been optimized for wave propagation to reduce the required number of grid points per wavelength while

still ensuring tolerable levels of numerical error.

Both the finite-volume and finite-difference methodologies have been adapted for this purpose [2–5].

However, as multidimensional finite-volume algorithms are generally more expensive in terms of numerical

cost than finite-difference algorithms, the majority of CAA codes are based on the finite-difference meth-

odology. Finite-difference schemes may be classified as either explicit or implicit. Explicit schemes employ
large computational stencils for accuracy. By comparison, implicit (compact) schemes achieve high-order

accuracy by solving for the spatial derivatives as independent variables at each grid point. For the same

stencil width, compact schemes are known to exhibit significantly more resolution of the smaller scales than

an equivalent explicit scheme. The drawback with these schemes is their implicit nature, which necessitates

the solution of a linear system of equations to obtain the spatial derivative at any point. Generally,

however, these systems are of a narrow-banded nature (usually tridiagonal) and may therefore be solved

quite efficiently.

The focus of the present paper is a family of small-stencil compact schemes recently proposed by
Hixon [6]. These schemes use a prefactorization method to reduce a non-dissipative central-difference

stencil to two lower-order biased stencils which have easily solved reduced matrices. In [6] this

approach was used to derive schemes of up to eighth-order accuracy requiring only three-point

stencils. The advantages of these schemes over traditional compact schemes arise from their reduced

stencil size and the independent nature of the resultant factored matrices. It is well known that a

major difficulty in dealing with high-order finite-difference schemes is the formulation of stable stencils

near boundaries. By reducing the stencil size of the compact schemes the prefactorization method

reduces the required number of boundary stencils thereby simplifying boundary specification. As
demonstrated in [6] the prefactorization also enhances robustness enabling the use of boundary stencils

that would otherwise lead to unstable systems when used in conjunction with the unfactored scheme.

The prefactored schemes also make boundary condition implementation much more straightforward

than the standard schemes. As detailed in [6], this is a consequence of the L+U factorization asso-

ciated with the new schemes, which allows boundary corrections (e.g., to the normal derivative [7,8])

to be applied much more easily and efficiently than with an LU based scheme such as the Thomas

algorithm.

In this work, we extend the factorization concept to a broader class of compact schemes using a more
general derivation strategy. Rather than using the algebraic manipulations detailed in [6], we develop an

approach that combines Fourier analysis with the notion of a numerical wavenumber. The advantage of

this approach, alongside its more general nature, is that it ensures the application of an optimization

strategy, designed to enhance the wave propagation characteristics of the schemes, is straightforward.

Using this approach we derive two optimized fourth-order accurate prefactored compact schemes. The

proposed schemes exhibit better wave propagation characteristics than the standard compact schemes,

whilst retaining the advantages of the prefactored schemes.

The paper is organized as follows. In Section 2.1, a brief review of the compact differencing
methodology is presented, along with a definition of the numerical wavenumber. In Section 2.2 the

strategy for developing the prefactored schemes is described and a sample application is presented. The

optimization of the prefactored schemes for wave propagation is presented in Section 2.3. Section 2.4

provides details of the boundary stencils for use with the interior schemes. The stability characteristics

of the prefactored compact schemes in conjunction with the developed boundary closures are analysed

in Section 3 through numerical applications and eigenvalue analysis. In Section 4 the favourable

properties of the derived schemes are demonstrated through their application to several benchmark

problems.
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2. Scheme development

2.1. Compact discretization

Following Lele [9], a general compact approximation to the first spatial derivative ðof =oxÞ may be

written in the form:

bDi�2 þ aDi�1 þ Di þ aDiþ1 þ bDiþ2 ¼ c
fiþ3 � fi�3

6Dx
þ b

fiþ2 � fi�2

4Dx
þ a

fiþ1 � fi�1

2Dx
; ð1Þ

where Di is the spatial derivative of the function f . The relations between the coefficients a, b, c, a and b are
derived by matching the Taylor series coefficients of various orders. The first unmatched coefficient de-

termines the formal truncation error of the approximation. These relations are:

aþ bþ c ¼ 1þ 2aþ 2b ðsecond orderÞ; ð2Þ
aþ 22bþ 32c ¼ 2
3!

2!
ðaþ 22bÞ ðfourth orderÞ; ð3Þ
aþ 24bþ 34c ¼ 2
5!

4!
ðaþ 24bÞ ðsixth orderÞ; ð4Þ
aþ 26bþ 36c ¼ 2
7!

6!
ðaþ 26bÞ ðeighth orderÞ; ð5Þ
aþ 28bþ 38c ¼ 2
9!

8!
ðaþ 28bÞ ðtenth orderÞ: ð6Þ

Only the eighth-order tridiagonal ðb ¼ 0Þ and the 10th-order pentadiagonal ðb 6¼ 0Þ schemes have un-

ique coefficients. The other lower-order schemes have free coefficients that are not determined until more

constraints are imposed or the stencil size is reduced. In the following work we consider only tridiagonal

systems ðb ¼ 0Þ, however the application of the analysis to pentadiagonal schemes is straightforward.

The numerical wavenumber of the generic compact derivative defined in Eq. (1) is determined using

Fourier analysis. The Fourier transform and its inverse are related by

~ff ðjÞ ¼ 1

2p

Z 1

�1
f ðxÞe�ijx dj; ð7Þ
f ðxÞ ¼
Z 1

�1
~ff ðjÞeijx dx: ð8Þ

Taking the Fourier transform of both sides of Eq. (1) and through the use of Euler�s formula we find

ij ~ff ¼ i

Dx
a sinðjDxÞ þ ðb=2Þ sinð2jDxÞ þ ðc=3Þ sinð3jDxÞ

1þ 2a cosðjDxÞ þ 2b cosð2jDxÞ

� �
~ff : ð9Þ

Comparing the two sides of the above equation it is clear that the quantity

~jj ¼ 1

Dx
a sinðjDxÞ þ ðb=2Þ sinð2jDxÞ þ ðc=3Þ sinð3jDxÞ

1þ 2a cosðjDxÞ þ 2b cosð2jDxÞ

� �
ð10Þ
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is the effective (or numerical) wavenumber of the Fourier transformation of the compact finite difference

scheme. We may observe immediately that the numerical wave number is purely real. This is a property of

symmetric operators and indicates the scheme is non-dissipative. It may also be observed that the numerical

wave number provides a good approximation of the actual wavenumber only over a limited portion of the

wavenumber spectrum [9, Fig. 1].

2.2. Prefactored compact schemes

To derive the factorized compact schemes we begin in the same manner as Hixon [10] and define forward

and backward operators DF
i and DB

i , such that

Di ¼
1

2
ðDF

i þ DB
i Þ: ð11Þ

The generic stencils for the forward and backward derivative operators are then defined as:

aFDF
iþ1 þ bFD

F
i ¼ 1

Dx
aFfiþ2½ þ bFfiþ1 þ cFfi þ dFfi�1 þ eFfi�2�; ð12Þ
bBD
B
i þ cBD

B
i�1 ¼

1

Dx
aBfiþ2½ þ bBfiþ1 þ cBfi þ dBfi�1 þ eBfi�2�; ð13Þ

where the coefficients must be chosen such that when the two biased stencils are added, the original central

compact scheme is recovered. To achieve this we refer to the analysis presented by Hixon and Turkel [11],
which revealed a property of their compact MacCormack schemes to be that the real (dispersive) com-

ponents of the numerical wavenumbers of the forward and backward stencils are equal and identical to the

numerical wavenumber of the original central compact scheme, whilst the imaginary (dissipative) com-

ponents of the numerical wavenumbers are equal and opposite. It is this property that we exploit to develop

the schemes presented in this paper. That is, to ensure we recover the original (non-dissipative) compact

scheme when the biased operators are added, the coefficients of the forward and backward stencils are

chosen such that the imaginary components of the numerical wavenumbers of the forward and backward

stencils are equal and opposite, and the real components are equal and identical to the numerical wave-
number of the original scheme.

The numerical wavenumber of the generic compact stencil (1) has already been presented in Eq. (10).

The numerical wavenumbers of the generic forward and backward operators may be determined in a

similar manner. The real and imaginary components of the numerical wavenumber, of the generic forward

stencil defined by Eq. (12), are given by:

Reð~jjFDxÞ ¼
ðaFaF þ bFbF � cFaF � dFbFÞ sinðjDxÞ

a2F þ b2
F þ 2aFbF cosðjDxÞ

þ ðaFbF � dFaF � eFbFÞ sinð2jDxÞ � eFaF sinð3jDxÞ
a2F þ b2

F þ 2aFbF cosðjDxÞ
; ð14Þ
Imð~jjFDxÞ ¼
�ðbFaF þ cFbFÞ � ðaFaF þ bFbF þ cFaF þ dFbFÞ cosðjDxÞ

a2F þ b2
F þ 2aFbF cosðjDxÞ

� ðaFbF þ dFaF þ eFbFÞ cosð2jDxÞ þ eFaF cosð3jDxÞ
a2F þ b2

F þ 2aFbF cosðjDxÞ
ð15Þ
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and those for the backward stencil defined by Eq. (13), by:

Reð~jjBDxÞ ¼
ðbBbB þ cBcB � dBbB � eBcBÞ sinðjDxÞ

b2
B þ c2B þ 2cBbB cosðjDxÞ

þ ðaBbB þ bBcB � eBbBÞ sinð2jDxÞ þ aBcB sinð3jDxÞ
b2
B þ c2B þ 2cBbB cosðjDxÞ

; ð16Þ
Imð~jjBDxÞ ¼
�ðcBbB þ dBcBÞ � ðbBbB þ cBcB þ dBbB þ eBcBÞ cosðjDxÞ

b2
B þ c2B þ 2cBbB cosðjDxÞ

� ðaBbB þ bBcB þ eBbBÞ cosð2jDxÞ þ aBcB cosð3jDxÞ
b2
B þ c2B þ 2cBbB cosðjDxÞ

: ð17Þ

From these relationships we observe it is sufficient to impose the following restrictions on the coefficients

of the backward stencil to ensure the imaginary components of the forward and backward operators are
equal and opposite

bB ¼ bF; cB ¼ aF; aB ¼ �eF;

bB ¼ �dF; cB ¼ �cF; dB ¼ �bF; eB ¼ �aF:
ð18Þ

The coefficients of the forward stencil may now be determined by matching the various terms in Eq. (14)

with those in Eq. (10), and by introducing the relation aF þ bF þ cF þ dF þ eF ¼ 0 to ensure that in regions

of zero gradient the computed derivatives vanish.

To demonstrate the procedure we consider the following sixth-order compact scheme

1

5
ðDiþ1 þ Di�1Þ þ

3

5
Di ¼

1

Dx
1

60
ðfiþ2

�
� fi�2Þ þ

14

30
ðfiþ1 � fi�1Þ

�
: ð19Þ

With reference to Eq. (10) we see that the numerical wavenumber is given by:

~jjDx ¼
14
15
sinðjDxÞ þ 1

30
sinð2jDxÞ

3
5
þ 2

5
cosðjDxÞ : ð20Þ

A comparison of this equation with Eq. (14) indicates it is sufficient to consider a simplified form of the

generic forward biased stencil (with aF ¼ eF ¼ 0) to replicate this scheme�s characteristics. The coefficients

are then obtained by solving the following system of equations:

a2F þ b2
F ¼ 0:6; 2aFbF ¼ 0:4;

bFbF � dFbF � cFaF ¼ 0:9333 _33; �dFaF ¼ 0:03333 _33;

bF þ cF þ dF ¼ 0:0:

ð21Þ

Due to the quadratic terms in the first of these relations, the coefficients are not uniquely determined by

the above system alone. To choose from the range of possible coefficients, we note from [10] that any error

�0 in the boundary derivative propagates into the domain as

ei ¼
aF
bF

� �i

e0; ð22Þ

where ei denotes the error at the ith point from the boundary. From the range of possible values we

therefore select those for which the ratio aF=bF is a minimum in order to minimize the influence of errors at



Table 1

Prefactored scheme coefficients

6/6 Scheme 6/4 Scheme 8/4 Scheme

aF 0.27639320225002103 0.29749586350149729 0.36469246438579827

bF 0.72360679761913232 0.71518963303413346 0.68337354822981936

aF 0.0 0.0 0.0

bF 0.87939886714173305 0.87203153537225117 0.80189188343264239

cF )0.75879773418340322 )0.73137757420887159 )0.53899133241291931
dF )0.12060113295832982 )0.14065396116337958 )0.27962697285647092
eF 0.0 0.0 0.01672642183674783
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the boundaries on the interior scheme. The final coefficients are given in Table 1. Here 6=6, 6=4 and 8=4
denote the various schemes developed in this work. The first digit refers to the maximum order of accuracy
of the scheme, while the second refers to the actual order of accuracy following optimization (to be defined

in the following section). The un-optimized sixth-order scheme is therefore denoted 6=6. It may be observed

that in relation to the original centered scheme the stencil has been reduced from five points to three points,

and the original tridiagonal matrix has been replaced by two independent bidiagonal matrices. This scheme

is identical to the sixth-order scheme presented in [10].

2.3. Optimized prefactored compact schemes

Discretization schemes that sacrifice formal order of accuracy in favour of wide-band performance can

provide significantly better wave propagation characteristics in the high wavenumber range. It is this

strategy we now develop for the prefactored compact schemes. Following Kim and Lee [12] we define the

integrated error (weighted deviation) as

Err �
Z rp

0

ðjDx� ~jjDxÞ2W ðjDxÞdðjDxÞ; ð23Þ

where W ðjDxÞ is a weighting function, and r is a factor to determine the optimization range ð0 < r < 1Þ
under consideration. The integrated error defined in Eq. (23) is different from that of Tam and Webb [4] in

that it contains the weighting function and range factor r. The weight function in Eq. (23) makes the

equation analytically integrable and also allows the integrand to be weighted to the high wavenumber

range. The weighting function employed in this paper, follows that proposed Kim and Lee, which has the

form

W ðjDxÞ ¼ ½1þ 2a cosðjDxÞ þ 2b cosð2jDxÞ�2; ð24Þ

where the parameters a and b correspond to those defined in Eq. (1). The conditions for Err to be a

minimum are

oErr

ogi
¼ 0 for i ¼ 1; 2; . . . ; 5; ð25Þ

where g1 ¼ a, g2 ¼ b, g3 ¼ c, g4 ¼ a and g5 ¼ b, again correspond to the coefficients of the basic stencil as

defined by Eq. (1). When combined with Eqs. (2) and (3) (to maintain at least fourth-order accuracy) we

obtain a system of linear algebraic equations by which the optimal coefficients may be obtained.

We consider the application of this optimization strategy to the sixth-order scheme described previously

and the following formally eighth-order accurate scheme:
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aðDiþ1 þ Di�1Þ þ Di ¼
1

2Dx
c
3
ðfiþ3

�
� fi�3Þ þ

b
2
ðfiþ2 � fi�2Þ þ aðfiþ1 � fi�1Þ

�
; ð26Þ

where a ¼ 1
6
ðaþ 9Þ, b ¼ 1

13
ð32a� 9Þ, c ¼ 1

10
ð�3aþ 1Þ and a ¼ 3

8
for eighth-order accuracy. When, however,

we require only fourth-order accuracy we have a two parameter family defined by a ¼ 1
3
ð2aþ 5cþ 4Þ and

b ¼ 1
3
ð4a� 8c� 1Þ. In this case two of the relations from Eq. (25) are employed to close the system of

equations and determine the coefficients. A similar strategy is employed for the formally sixth-order
scheme. However, in this case we only have a single free parameter for optimization when we stipulate

fourth-order accuracy, and therefore utilize only one of the relations from Eq. (25) to perform the

optimization.

The application of this procedure to the formally sixth-order scheme defined by Eq. (19), and the for-

mally eighth-order scheme defined by Eq. (26) leads to the two optimized prefactored schemes defined by

the coefficients given in Table 1. The first of these scheme requires a three-point stencil, whereas the latter

requires a five-point stencil. The fourth-order three-point stencil retains the same stencil size as the un-

optimized sixth-order prefactored compact scheme, and therefore requires the same computational effort,
however it has improved resolution characteristics. The second scheme also retains the desirable bi-diag-

onal nature and requires only one additional point to compute the forward and backward stencils. In

relation to the original eighth-order scheme the stencil size has been reduced by two points. The rela-

tionships between ~jjDx and jDx over the interval 0 to p for these schemes are shown in Fig. 1 alongside

those for the un-optimized sixth-order prefactored compact scheme, and the well known fourth-order DRP

scheme of Tam and Webb [4]. The dispersive characteristics of these schemes may be more clearly seen in

Fig. 2, which shows phase speed error (jðdð~jjDxÞ=dðjDxÞÞ � 1:0j) as a function of wave number on a log-

arithmic scale. The optimized schemes maintain a low dispersive error over a larger range of wavenumbers.
For jDx up to almost 1:4 the fourth-order, three-point stencil maintains the error below the 10�3 level. The

fourth-order, five-point stencil performs even better, maintaining this low level of error up to jDx ’ 1:9.
The optimized schemes all exhibit greater dispersion errors for long waves, however the magnitude of these
Fig. 1. Dispersive characteristics of schemes. (� � �) Ideal relationship, (– – –) fourth-order DRP scheme (seven-point stencil), (—) sixth-

order compact scheme (three-point stencil), (- - -) fourth-order compact scheme (three-point stencil), (� � � � �) fourth-order compact

scheme (five-point stencil).



Fig. 2. Phase speed error on a logarithmic scale. (– – –) Fourth-order DRP scheme (seven-point stencil), (—) sixth-order compact

scheme (three-point stencil), (- - -) fourth-order compact scheme (three-point stencil), (� � � � �) fourth-order compact scheme (five-

point stencil).
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errors remains very small. Further characteristics of these schemes are summarized in Table 2. Here, ~jjcDx
denotes the maximum resolvable wavenumber using the criterion ðjðdð~jjDxÞ=dðjDxÞ � 1:0ÞjÞ < 0:005. The
resolution of the spatial discretization schemes is also represented by the minimum points-per-wavelength

needed to resolve a wave. Here the points-per-wavelength value has been computed as 2p=~jjcDx. The
maximum effective wavenumber is indicated by ~jjmaxDx.

2.4. Boundary formulations

For a domain consisting of N points, the three-point, fourth-order scheme can be applied from j ¼ 2 to

N � 1, while the five-point, fourth-order scheme can be applied from j ¼ 3 to N � 2. At and near the

domain boundaries it is therefore necessary to employ additional expressions. Furthermore, in realistic

computations similar boundary stencils are also needed along inter-block boundaries in multi-block cal-

culations. In contrast to the situation along external domain boundaries, however, the flow data are known

on both sides of the boundary in such situations. Two forms of explicit boundary stencils have therefore

been developed. Along internal boundaries a central explicit stencil is employed, whereas along external
boundaries a biased explicit stencil is used.
Table 2

Points-per-wavelength required to satisfy ððjdð~jjDxÞ=dðjDxÞÞ � 1:0jÞ < 0:005

Spatial discretization Stencil size ~jjcDx Resolution ~jjmaxDx

Explicit ðDx2Þ 3 0.10 62.83 1.00

Explicit DRP ðDx4Þ 7 0.92 6.83 1.64

PF compact ðDx6Þ 3 1.03 6.10 1.98

PF compact ðDx4Þ 3 1.40 4.49 2.09

PF compact ðDx4Þ 5 1.85 3.40 2.48
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The biased derivative operators for use with the three-point, fourth-order scheme are:

DB
1 ¼ 1

Dx

X4
j¼1

sjfj; DB
N ¼ 1

Dx

XN
j¼N�3

ejfj; ð27Þ

and

DF
1 ¼ 1

Dx

X4
j¼1

�eNþ1�jfj; DF
N ¼ 1

Dx

XN
j¼N�3

�sNþ1�jfj; ð28Þ

where the coefficients sj and ej have been determined by matching the Taylor series of the forward and
backward compact interior stencils to third-order accuracy. The numerical values of the coefficients are

listed in Tables 3 and 4. Along internal boundaries the following skewed 11 point central schemes are

employed:

DF
i ¼ 1

Dx

X5
j¼�5

bjfiþj; DB
i ¼ 1

Dx

X5
j¼�5

�b�jfiþj; ð29Þ

where the coefficients bj are as listed in Table 5. These coefficients have been determined by matching the

Taylor series expansions of the forward and backward interior stencils to fourth-order and using the re-

maining free coefficients to more closely match the dispersion characteristics of these stencils with those of

the interior scheme.
For the optimized five-point fourth-order scheme, boundary stencils are required at nodes

j ¼ 1; j ¼ 2; j ¼ N � 1 and j ¼ N . At points j ¼ 2 and j ¼ N � 1 the biased explicit stencils must provide

approximations of DF and DB. The coefficients of the biased explicit stencils use at these points have been

obtained by matching the Taylor series expansions of the explicit stencils to those of the forward and

backward derivative operators to third-order. The resulting boundary stencils are:

DB
2 ¼ 1

Dx

X4
j¼1

sjfj; DB
N�1 ¼

1

Dx

XN
j¼N�3

ejfj; ð30Þ
Table 3

Boundary stencil coefficients

8/4 Scheme 6/4 Scheme

s1 )0.266441396584756 )1.968010730879214299
s2 )0.633783873497153 3.336693493864702415

s3 1.066891936748576 )1.769354795091761932
s4 )0.16666666666666 0.400672032106273816

Table 4

Boundary stencil coefficients

8/4 Scheme 6/4 Scheme

eN 0.400225270081910 1.69865593578745236

eN�1 0.366216126502846 )2.66330650613529758
eN�2 )0.933108063251423 1.23064520490823806

eN�3 0.1666666666666666 )0.26599463456039285



Table 5

Boundary stencil coefficients

6/4 Scheme 8/4 Scheme

b�5 )0.00083442741566041 )0.00390419271986273
b�4 0.01022630353651893 0.02780538036220911

b�3 )0.05956199104811759 )0.10589163462457388
b�2 0.22724621139300842 0.29755042262117544

b�1 )0.72224477117316119 )0.91725943599549454
b0 )0.21013712054967647 0.07750687358345097

b1 0.96979343766394390 0.85851156238327769

b2 )0.27390976718640895 )0.31630942259240957
b3 0.07031776392683924 0.10589163462457388

b4 )0.01184575620106222 )0.02780538036220911
b5 0.00095011705377633 0.00390419271986273
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and

DF
2 ¼ 1

Dx

X4
j¼1

�eNþ1�jfj; DF
N�1 ¼

1

Dx

XN
j¼N�3

�sNþ1�jfj; ð31Þ

where coefficients sj and ej are as listed in Tables 3 and 4. At the actual boundary points j ¼ 1 and j ¼ N ,

additional relations are required. At these points the following third-order explicit stencil is used:

D1 ¼
1

Dx

X4
j¼1

cjfj; DN ¼ 1

Dx

XN
j¼N�3

�cNþ1�jfj; ð32Þ

where c1 ¼ �33=18, c2 ¼ 3, c3 ¼ �3=2 and c4 ¼ 1=3.Along internal boundaries, the same 11-point stencil (29)

as usedwith the fourth-order three-point interior scheme is used, butwith the coefficients as defined inTable 5.
3. Scheme analysis

The computational cost of the optimized prefactored compact schemes is an important consideration.

The optimization procedure itself does not incur any additional computational costs. The optimized

schemes therefore require the same computational effort as the un-optimized schemes. The prefactorization

does, however, incur a small computational penalty. To see this we first note that either of the optimized

prefactored fourth-order schemes may be written in the form:

1

2
DF

j ¼ 1

2bFDx
bFðfjþ1

�
� fjÞ þ dFðfj�1 � fjÞ þ eFðfj�2 � fjÞ

�
� aF
2bF

DF
jþ1; ð33Þ
1

2
DB

j ¼ 1

2bFDx
bFðfj
�

� fj�1Þ þ dFðfj � fjþ1Þ þ eFðfj � fjþ2Þ
�
� cB
2bB

DB
j�1; ð34Þ

where the relations between the coefficients of the forward and backward stencils have been substituted to

highlight the equivalent terms in the two stencils. The operation count associated with solving the above

systems is essentially the same as the most efficient Thomas algorithm as described in [10]. For the fourth-

order three-point scheme a total of four multiplications and six additions are required per point, one addition

per point more than the most optimized Thomas algorithm. For the fourth-order five-point scheme a total of

five multiplications and nine additions are required per point, two more additions than the most efficient

Thomas algorithm. For later comparisons we note that the explicit fourth-order DRP scheme requires a total

of three multiplications and five additions to evaluate the first spatial derivative at a given point.
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3.1. Numerical stability

To ascertain the global order of accuracy and demonstrate the stability characteristics of the boundary

closures combined with the interior optimized prefactored compact schemes we consider the one-dimen-

sional scalar wave equation,

ou
ot

þ ou
ox

¼ 0; �16 x6 1; tP 0; ð35Þ

subject to the following initial and boundary conditions:

uðx; 0Þ ¼ sinð2pxÞ; uð�1; tÞ ¼ sinð2pðx� tÞÞ: ð36Þ

Eq. (35) is solved over the domain �16 x6 1 using a range of progressively finer uniform meshes. The

interior schemes are combined with the boundary stencils of Section 2.4 and the solutions are integrated to

long times, whilst the solution is examined for boundedness (asymptotic stability). Also the computational

grid is refined while keeping the CFL number fixed, and convergence of the solution established (Lax

stability). Consistent with the method of lines approach, the compact schemes are first used to discretize the

spatial operators, before a fourth-order, four-stage Runge–Kutta scheme is used to integrate the equations

forward in time. The L2 error,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
j¼1ðuj � uexactÞ2

q
, is then examined for boundedness. Where uexact is

the exact solution to this initial boundary value problem and is given by,

uexactðx; tÞ ¼ sinð2pðx� tÞÞ: ð37Þ

The simulations were run to a time T ¼ 100 with a CFL number of unity. In each case the errors remained
bounded and the simulations were characterized by nearly constant levels of error on all grids. Reducing the

CFL number was found to only weakly influence the results, confirming that the observed errors are es-

sentially only due to the spatial discretization schemes. The L2 errors at time T ¼ 100 for both the fourth-

order schemes are shown in Fig. 3 for various grid densities. In both cases it may be seen that the error decays
Fig. 3. L2 solution errors: convergence rate of fourth-order schemes. (—) Idealized convergence rate, (- - -) fourth-order compact

scheme (three-point stencil), (� � � � �) fourth-order compact scheme (five-point stencil).
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in accordance with the idealized (fourth-order) convergence rate, and the fourth-order five-point scheme

exhibits errors of a lower absolute value. The third-order boundary closures presented are therefore sufficient

to ensure fourth-order global accuracy. We note that efforts to derive higher-order boundary closures, by

matching the Taylor series of the interior schemes to higher-order, failed to yield stable systems.
3.2. Eigenvalue analysis

To confirm the findings of the previous section an eigenvalue analysis is performed to verify the

boundary closures do indeed yield asymptotically stable solutions. We begin by considering

ou
ot

þ c
ou
ox

¼ 0 ð38Þ

over the domain x 2 ½0; 1� with the prescribed inflow boundary condition uð0; tÞ ¼ gðtÞ. The domain is

divided into N uniform intervals of width Dx, where NDx ¼ 1. The application of either of the compact

spatial operators to Eq. (38) yields a system of ODEs which may be written:

dU

dt
¼ � c

Dx
MUþ BgðtÞ: ð39Þ

Here M is a N � N matrix, defined such that Ux ¼ MU, and U is an N -dimensional vector representing

the values of the function at the nodal points. B is a vector of dimension N . For the purpose of stability

analysis we note that gðtÞ may be set to zero with little loss of generality [13]. The eigenvalues of M de-

termine the asymptotic stability of the system of ODEs. These are in general complex valued and depend on

the size of the matrix M, the interior differencing scheme and the boundary scheme. For numerical stability

it is required that all eigenvalues of M lie in the left half of the complex plane. The matrix M is determined

as follows for the prefactored compact schemes. Firstly, the boundary expressions and interior schemes are

combined to eliminate ðu0ÞFx and ðu0ÞBx from the system of equations. Through the application of the
boundary condition gðtÞ ¼ 0 ¼ u0, the system of equations for the forward and backward derivatives UF

x

and UB
x may be written as:

AFUF
x ¼ 1

Dx
CFU; ð40Þ
ABUB
x ¼ 1

Dx
CBU; ð41Þ

where the above system of equations is applied at nodes j ¼ 1 to N . Using Eq. (11), Ux may then be ex-
pressed as

Ux ¼
1

2
ðUF

x þUB
x Þ ¼

1

2Dx
ððAFÞ�1

CF þ ðABÞ�1
CBÞU ð42Þ

from which we find

M ¼ 1

2
ððAFÞ�1

CF þ ðABÞ�1
CBÞ: ð43Þ

For the combinations of interior schemes and boundary stencils presented in this work the eigenvalues of
M must be determined numerically. For this purpose we have used an eigenvalue solver from the LAPACK

library. In all cases the matrix M was evaluated numerically, following the specification of the matrices AF,

CF, AB and CB appropriate to the interior scheme and boundary closure being considered. This was carried
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out for three different values of N , namely 26, 51 and 101. Figs. 4 and 5 illustrate the eigenvalues obtained

for the two schemes with their respective boundary closures. As may be seen in both cases the combinations

of interior stencil and boundary closures yield eigenvalues with negative real parts, and therefore satisfy the

stability constraint.
Fig. 4. Eigenvalue spectrum fourth-order three-point stencil scheme with third-order boundary closure: (d) N ¼ 26; (�) N ¼ 51; (þ)

N ¼ 101.

Fig. 5. Eigenvalue spectrum fourth-order five-point stencil scheme with third-order boundary closure: (d) N ¼ 26; (�) N ¼ 51; (þ)

N ¼ 101.
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4. Applications

In this section we illustrate the properties of the derived schemes through their application to several

benchmark problems. These problems are taken from the First [14] and Second [15] Workshops on

Benchmark problems for Computational Acoustics.

4.1. Linear wave propagation

In this first problem we consider the one-dimensional convection of an initial Gaussian disturbance. This

problem is governed by the simple wave equation:

ou
ot

þ ou
ox

¼ 0; ð44Þ

where

uðx; 0Þ ¼ 1

2
e� lnð2Þðx�30Þ2=2;

Dx ¼ 1; 06 x6 300:
ð45Þ

It should be noted that the initial Gaussian distribution specified here differs from that specified in the

original problem. The distribution given here has a smaller half width, providing a more challenging case by

raising the wavenumber content of the initial disturbance.

The numerical simulations are performed using the optimized compact schemes to evaluate the spatial

derivative. Temporal integration is performed using the 4–6 low dispersion and dissipation Runge–Kutta
(LDDRK) optimized scheme of Hu et al. [16]. This is a two-step alternating scheme in which different

coefficients are employed in the alternating steps. The 4–6 notation signifies four stages are used for the first

time step and six stages for the second time step in the cycle. The low-storage implementation of this scheme

is employed in this work. This results in a scheme which is fourth-order accurate in time for linear problems

and second-order accurate for non-linear problems. When combined with the fourth-order three-point

compact stencil, the scheme is stable to a CFL limit of 1.199. When combined with the fourth-order five-

point compact stencil, the scheme is stable to a CFL limit of 1.011. To ensure the errors observed in the

simulations are essentially due only to the spatial discretization scheme employed we employ in this
problem a time-step size well below that imposed by stability considerations ðDt ¼ 0:01Þ. The solutions

obtained after 20,000 time-steps are shown in Fig. 6 for Tam�s DRP scheme, Hixon�s prefactored sixth-

order scheme, the optimized fourth-order three-point prefactored compact scheme, and the fourth-order

five-point prefactored compact scheme. It may be seen that under these severe initial conditions the DRP

scheme suffers from considerable dispersion error. The sixth-order compact scheme shows less error, but is

seen to perform less well than the fourth-order, three-point optimized scheme. However, as one would

anticipate from the previous analysis, the best performance is observed with the fourth-order, five-point

optimized compact scheme.
From these results it is evident that the optimized prefactored compact schemes have reduced grid

resolution requirements in comparison to both the explicit and un-optimized prefactored compact schemes.

To gauge the overall efficiency of these schemes it is important to consider the associated memory and

computational costs. The relative importance of these two factors is problem dependent. In the context of

the current problem, numerical experiments indicate the explicit fourth-order scheme requires 1.85 more

grid points to achieve a level of accuracy comparable to that of the fourth-order five-point prefactored

compact scheme. Similarly, the sixth-order and fourth-order three-point prefactored schemes require 1.45

and 1.25 more grid points, respectively. The relative cost of the various schemes may be assessed by



Fig. 6. Comparison between computed and exact solutions of the simple one-dimensional wave equation. (a) Fourth-order DRP

scheme (seventh-point stencil). (b) Sixth-order compact scheme (three-point stencil). (c) Fourth-order compact scheme (three-point

stencil). (d) Fourth-order compact scheme (five-point stencil). (—) Numerical solution, (- - -) exact solution.
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considering the operation count per node. The explicit fourth-order DRP scheme requires a total of eight

operations, whereas the implicit prefactored three- and five-point schemes require 10 and 14 operations,

respectively. The three- and five-point implicit schemes are therefore approximately 1.25 and 1.75 times

more expensive than the explicit fourth-order scheme. On the basis of this simplified analysis it may be

concluded that the gain in resolution obtained through the use of the optimized prefactored schemes
outweighs the associated greater computational overheads, and the fourth-order three-point scheme offers

the best performance in terms of resolution versus computational cost.

4.2. Two-dimensional acoustic scattering

To demonstrate the accuracy of the derived schemes in multi-dimensions and illustrate the use of the

derived boundary stencils we consider as a second example a two-dimensional acoustic scattering problem

from the Second CAA workshop. The physical problem is to find the propeller generated sound field

scattered off the fuselage of an aircraft. The fuselage is idealized as a circular cylinder and the noise source
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(propeller) as a line source so that the computation problem is two-dimensional. The two-dimensional

cylinder has a radius of R ¼ 0:5 and is located at the origin. At time t ¼ 0, the initial conditions are

u ¼ v ¼ 0, and

pðx; y; 0Þ ¼ exp

"
� ln 2

ðx� 4Þ2 þ ðyÞ2

0:04

 !#
: ð46Þ

The problem asks for the unsteady pressure time history at three points Aðr ¼ 5; h ¼ 90�Þ,
Bðr ¼ 5; h ¼ 135�Þ and Cðr ¼ 5; h ¼ 180�Þ, over the time interval t ¼ 6 ! 10. We find the solution to this

problem by solving the linearized Euler equations in polar coordinates:
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ot
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uh
p

2
4

3
5þ o
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p
0

ur

2
4

3
5þ 1

r
o

oh

0

p
uh

2
4

3
5 ¼ 1

r

0

0

ur

2
4

3
5: ð47Þ

All the numerical computations were performed over a domain extending radially from R ¼ 0:5 to
R ¼ 10:5, and over the entire azimuthal plane with h ranging from 0 to 2p. A total of 81 and 149 mesh

points were employed in the radial and azimuthal directions, respectively. A CFL number of 0.5 was

employed in all simulations. Three boundary conditions were used: a wall condition on the cylinder at

r ¼ 0:5, an acoustic radiation condition along the external domain boundary at r ¼ 10:5, and a periodic

condition along both azimuthal boundaries at h ¼ 0 and h ¼ 2p. The solid wall boundary condition follows

the implementation of Hixon [10]. The radiation condition applied along the far field boundary is the

acoustic radiation condition of Bayliss and Turkel [17]. The radial derivatives at the outer boundary are

computed using one-sided boundary stencils. Along the periodic boundaries the explicit 11-point stencils
are used to start and end the sweeps in the azimuthal direction. The stencil uses data from both sides of the

periodic boundaries. As the problem is solved in serial on a single processor no overlap is required between

the adjacent boundaries to use the 11-point explicit stencil.

The mesh used in the simulations is shown partially in Fig. 7, alongside a snapshot of the computed

pressure field at time t ¼ 6:37. At this time the acoustic pulse has already impinged upon the cylinder
Fig. 7. Instantaneous pressure contours at time t ¼ 6:37.



Fig. 8. Comparison between computed and exact solutions of two-dimensional scattering problem at A (r ¼ 5, h ¼ 90�). (a) Fourth-
order DRP scheme (seven-point stencil). (b) Sixth-order compact scheme (three-point stencil). (c) Fourth-order compact scheme (three-

point stencil). (d) Fourth-order compact scheme (five-point stencil). (—) Numerical solution, (- - -) exact solution.
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generating the reflections evident in the solution field. Fig. 8 compares the solutions obtained using the

same schemes as employed in the previous test case with the exact solution at the point Aðr ¼ 5; h ¼ 90�Þ.
As with the previous test case the superior resolution characteristics of the optimized prefactored schemes

are evident. To verify similar accuracy is obtained irrespective of direction, Fig. 9 shows the pressure time

histories computed using the optimized fourth-order, five-point scheme at the three observer locations,

alongside the exact solutions. As may be seen, good agreement is evident at all three locations.
5. Conclusions

A strategy for developing prefactored compact schemes has been presented. The approach facilitates the

optimization of the biased stencils for the simulation of wave phenomena. The procedure employs Fourier

analysis and the concept of a numerical wavenumber to determine the coefficients of the biased stencils. The

optimized prefactored compact schemes have smaller stencil sizes and require only the solution of two
independent bi-diagonal matrices. Third-order accurate boundary stencils have been presented for the



Fig. 9. Comparison between computed and exact solutions of two-dimensional scattering problem. (a) Pressure time history at A

(r ¼ 5, h ¼ 90�). (b) Pressure time history at B (r ¼ 5, h ¼ 135�). (c) Pressure time history at C (r ¼ 5, h ¼ 180�). (—) Fourth-order

compact scheme (five-point stencil), (}) analytic solution.
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optimized prefactored compact schemes. The stability of these explicit boundary closures combined with

the implicit interior schemes has been shown through numerical applications and eigenvalue analysis. The
favourable characteristics of the developed schemes have been demonstrated through their application to

single- and multi-dimensional benchmark problems.
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